Coloring uniform hypergraphs with bounded edge degree

Dmitry A. Shabanov¹

Let H be a hypergraph and let $\Delta_e(H)$ denote the maximum edge degree of H. In 1973 P. Erdős and L. Lovász (see [1]) stated the following problem: find the value $\Delta_e(n,r)$ equal to the minimum possible $\Delta_e(H)$, where H is an *n*-uniform non-*r*-colorable hypergraph. By using Local Lemma they proved that

$$\Delta_e(n,r) \ge \frac{1}{e}r^{n-1}.$$
(1)

This bound was improved by J. Radhakrishnan and A. Srinivasan in 2000 in the case of two colors. They showed (see [2]) that, for sufficiently large n,

$$\Delta_e(n,2) \ge 0.17 \left(\frac{n}{\ln n}\right)^{\frac{1}{2}} 2^n$$

In our work we improve the classical result (1) of Erdős and Lovász as follows.

Theorem 1. For every $n \ge 3$, $r \ge 3$, the following inequality holds

$$\Delta_e(n,r) \ge \frac{1}{8}\sqrt{n} r^{n-1}$$

We also study the value $\Delta_e(n, r, s)$ equal to the minimum possible $\Delta_e(H)$, where H is an n-uniform non-r-colorable hypergraph with girth at least s + 1. It is clear that $\Delta_e(n, r, 1) = \Delta_e(n, r)$ and $\Delta_e(n, r, s) \leq \Delta_e(n, r, s + 1)$. Erdős and Lovász (see [1]) showed that, for all $s \geq 1$,

$$\Delta_e(n, r, s) \le 20 \, n^3 \, r^{n+1}.$$

This upper bound was improved by A.V. Kostochka and V. Rödl (see [3]):

$$\Delta_e(n,r,s) \le n^2 r^{n-1} \ln r.$$
(2)

Our second main result gives a new lower bound for the value $\Delta_e(n, r, 3)$.

Theorem 2. There exists an integer n_0 such that, for every $n \ge n_0$ and every $r \ge 2$, the following inequality holds

$$\Delta_e(n, r, 3) \ge r^{n-1} n^{1-4 \left\lfloor \sqrt{\frac{\ln n}{\ln(2\ln n)}} \right\rfloor^{-1}}.$$
(3)

Our bound (3) asymptotically improves all previously known results. It is easy to see that the upper bound (2) is only $n^{1+o(1)} \ln r$ times greater than (3).

The proofs of Theorem 1 and Theorem 2 are based on two different modifications of the random recoloring method.

References

- P. Erdős, L. Lovász, "Problems and results on 3-chromatic hypergraphs and some related questions", *Infinite and Finite Sets*, Coll. Math. Soc. Janos Bolyai, **10** (1973), 609–627.
- [2] J. Radhakrishnan, A. Srinivasan, "Improved bounds and algorithms for hypergraph twocoloring", *Random Structures and Algorithms*, 16:1 (2000), 4–32.
- [3] A.V. Kostochka, V. Rödl, "Constructions of sparse uniform hypergraphs with high chromatic number", *Random Structures and Algorithms*, **36**:1 (2010), 46–56.

¹Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Department of Probability Theory, e-mail: shabanov@mech.math.msu.su; Moscow Institute of Physics and Technology, Faculty of Innovations and High Technology, Department of Data Analysis; Yandex Internet Company, Research Laboratory, e-mail: dshabanov@yandex-team.ru;

This work was supported by Russian Foundation of Fundamental Research (grant 09-01-00294), Program of Support of Leading Scientific Schools (grant NSH-8784.2010.1) and by the grant of the President of Russian Federation MK-3429.2010.1