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During the last decade, many models of the random web-graph have appeared (see [1], [2]). One of
them was proposed in 2002 by B. Bollobdas and O. Riordan (see [3]). In this model, a random graph
process (G%)2,, for any fixed k& € N, is defined. Let us recall the definition. First, we take the graph
Gl = ({1},{(1,1)}) on the vertex 1 with a single loop. Further, given a graph G{* = ({1,...,t—1}, Ei" ")
with ¢ — 1 edges or loops (¢ > 2) we transform it into G} by adding one new vertex ¢ and one new random

edge (t,1), where ¢ € {1,...,t} and P(i =t) = 2:5%1’ P(i=j) = deifi_ill], j < t. Finally, we take G} and
identify blocks of k vertices: the vertices 1,...,k form a new vertex vy, the vertices k£ + 1,...,2k form a
new vertex wvs, etc.

For the random graph G%, various results have been proved showing that this graph has many properties
of the World Wide Web. For example, it is subject to a power law distribution of its vertex degrees (see
[4] = [6], [7]). Tt also has small diameter (see [4] — [6], [3]).

In our work, we continue studying important statistics of the random web-graph in the described model.

Below we briefly list our results.

1. Let X4, 4, be the number of edges in G}, whose vertices have degrees d; and dy respectively. We
calculate the expectation EXy, 4, of this random variable getting an asymptotic formula with the
exact values of the two first terms and a remainder of the form O 4, 4, (%) As a simple corollary we
re-obtain an asymptotic expression for the expectation of the number X, of vertices having degree
d: EXy = % + O(d/t). Tt is worth noting that here we do not have any restriction on d (cf.
[7]): one should only assume that d = o(t). Also we prove tight concentration of X, 4, around its
expectation.

2. We study the expectation of the “second indegree” of a vertex in G%. By the second indegree of
an ¢ we mean the number of edges going to the neighbours of ;. We find sharp formulas for this
expectation and we also prove some tight concentration results.

3. We find simple formulas for the expectation of the numbers of given subgraphs H in the random
graph GY.
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4. We use some of the obtained results in order to statistically classify “dense structures” (communities,
link spam, etc.) in the World Wide Web. Such classification is important to improve quality of search
engine rankings.
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