The Size of the Largest Part of Random Weighted Partitions of Large Integers

Ljuben Mutafchiev

American University in Bulgaria, 2700 Blagoevgrad, Bulgaria and Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences ljuben@aubg.bg

April 6, 2011

Abstract

A weighted partition of the positive integer n is a multiset of size n whose decomposition into a union of disjoint components (parts) satisfies the following condition: for a given sequence of non-negative numbers $\{b_k\}_{k\geq 1}$, a part of size k appears in exactly one of b_k possible types. Assuming that a weighted partition of n is selected uniformly at random from the set of all such partitions, we study the limiting distribution of the largest part size X_n as $n \to \infty$. Under certain fairly general assumptions on the Dirichlet generating series $D(s) = \sum_{k=1}^{\infty} b_k k^{-s}$, $s = \sigma + iy$, G. Meinardus, Math. Z. 59(1954), 388-398, has obtained the asymptotic of the total number of weighted partitions of n. We assume that Meinardus conditions hold and prove that X_n , appropriately normalized, converges weakly to a Gumbel distribution.

1