Average-case Performance of Heuristics for Three-dimensional Random Assignment Problems

Alan Frieze, Carnegie Mellon University

Abstract

Beautiful formulas are known for the expected cost of random twodimensional assignment problems, but in higher dimensions, even the scaling is not known. In 3 dimensions and above, the problem has natural "planar" and "axial" versions, both of which are NP-hard. For 3-dimensional Planar random assignment instances of size n, the cost scales as $\Omega(1/n)$, and a main result of the present paper is the first polynomial-time algorithm that, with high probability, finds a solution of cost $O(n^{-1+\epsilon})$, for arbitrary positive ϵ (or indeed ϵ going slowly to 0). For 3-dimensional Axial assignment, the lower bound is $\Omega(n)$, and we give a new efficient matching-based algorithm that returns a solution with expected cost $O(n \log n)$.

Joint work with Gregory Sorkin.